论文标题
在简单连接的流浪域的几何形状上
On the geometry of simply connected wandering domains
论文作者
论文摘要
我们研究了整个功能的简单连接的流浪域的几何形状,并证明每个有界的连接的常规开放集(其闭合都具有连接的补体)是某些整个功能的徘徊域。特别是这样的域可以被实现为逃脱或振荡的徘徊域。结果,我们得到的每个乔丹曲线都是整个功能的流浪fatou组分的边界。
We study the geometry of simply connected wandering domains for entire functions and we prove that every bounded connected regular open set, whose closure has a connected complement, is a wandering domain of some entire function. In particular such domain can be realized as an escaping or an oscillating wandering domain. As a consequence we obtain that every Jordan curve is the boundary of a wandering Fatou component of some entire function.