论文标题

非亚伯u二元性

Non-abelian U-duality at work

论文作者

Musaev, Edvard T., Sakatani, Yuho

论文摘要

非亚伯u-duality源于构建特殊的Drinfel'd代数(EDA),该代数扩展了经典Drinfel的收缩。这种对称是泊松的自然延伸 - lie t偶尔性,被认为是II型字符串/M理论的对称性或其低能量有效理论。在本文中,我们考虑了以e $ {} _ {} _ {n(n)} $ EDA开头的11维背景或10维背景的非阿布莱u二维,带有$ n \ leq 6 $,带有消失的长号。后者保证所有双重背景都满足标准的超级运动方程。特别是,当二元性包括及时的t偶数时,我们会根据预期获得M $^*$ - 理论或类型II $^*$背景方程的解决方案。同样从Cooboundary EDA开始,我们提供了M理论和IIB类型背景的广义杨的示例。当非亚伯u二元性效果很好地作为产生转换的解决方案时,获得的结果提供了明确的示例。

Non-abelian U-duality originates from the construction of exceptional Drinfel'd algebra (EDA), which extends the constriction of the classical Drinfel'd double. This symmetry is a natural extension of Poisson--Lie T-duality and is believed to be a symmetry of Type II string/M-theory or their low-energy effective theories. In this paper, we consider non-abelian U-dualities of 11- or 10-dimensional backgrounds starting with E${}_{n(n)}$ EDA with $n\leq 6$ with vanishing trombone gauging. The latter guarantees that all dual backgrounds satisfy the standard supergravity equations of motion. In particular, when the duality includes a timelike T-duality, we obtain solutions of M$^*$-theory or Type II$^*$ background equations, as expected. Also starting with coboundary EDA's we provide examples of generalised Yang--Baxter deformations of M-theory and Type IIB backgrounds. The obtained results provide explicit examples when non-abelian U-duality works well as a solution generating transformation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源