论文标题

基于模型函数的Bregman近端最小化算法的全局收敛

Global Convergence of Model Function Based Bregman Proximal Minimization Algorithms

论文作者

Mukkamala, Mahesh Chandra, Fadili, Jalal, Ochs, Peter

论文摘要

Lipschitz的梯度映射的连续函数梯度映射在设计各种优化算法中起着至关重要的作用。但是,在诸如低级矩阵分解或深度神经网络问题之类的实际应用中产生的许多功能都没有Lipschitz连续梯度。这导致开发了一个普遍的概念,称为$ L $ -SMAD物业,该物业基于称为Bregman距离的广义接近度措施。但是,$ L $ -SMAD属​​性无法处理非平滑函数,例如,简单的非平滑函数(例如$ \ abs {x^4-1} $),许多实用的复合问题也超出了范围。我们通过提出地图属性来解决此问题,该地图属性概括了$ l $ -SMAD属​​性,并且对大型的NonConvex非conmooth复合问题也有效。根据提出的MAP属性,我们提出了一种称为模型BPG的全球收敛算法,该算法统一了几种现有算法。收敛分析基于新的Lyapunov函数。我们还以数值说明了模型BPG在标准相检索问题,可靠的相位检索问题和Poisson线性反问题上的出色性能,与对通用非convex非conmothmooth优化问题有效的最有效的方法相比。

Lipschitz continuity of the gradient mapping of a continuously differentiable function plays a crucial role in designing various optimization algorithms. However, many functions arising in practical applications such as low rank matrix factorization or deep neural network problems do not have a Lipschitz continuous gradient. This led to the development of a generalized notion known as the $L$-smad property, which is based on generalized proximity measures called Bregman distances. However, the $L$-smad property cannot handle nonsmooth functions, for example, simple nonsmooth functions like $\abs{x^4-1}$ and also many practical composite problems are out of scope. We fix this issue by proposing the MAP property, which generalizes the $L$-smad property and is also valid for a large class of nonconvex nonsmooth composite problems. Based on the proposed MAP property, we propose a globally convergent algorithm called Model BPG, that unifies several existing algorithms. The convergence analysis is based on a new Lyapunov function. We also numerically illustrate the superior performance of Model BPG on standard phase retrieval problems, robust phase retrieval problems, and Poisson linear inverse problems, when compared to a state of the art optimization method that is valid for generic nonconvex nonsmooth optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源