论文标题

MRDET:一个多头网络,用于空中图像中准确的定向对象检测

MRDet: A Multi-Head Network for Accurate Oriented Object Detection in Aerial Images

论文作者

Qin, Ran, Liu, Qingjie, Gao, Guangshuai, Huang, Di, Wang, Yunhong

论文摘要

航空图像中的物体通常具有任意取向,并且位于地面上,使其非常挑战。许多最近开发的方法试图通过估计额外的取向参数并放置密集锚来解决这些问题,这将导致高模型的复杂性和计算成本。在本文中,我们提出了一个任意面向的区域建议网络(AO-RPN),以生成从水平锚转化的方向提案。 AO-RPN非常有效,只有几个参数增加了,而不是原始RPN。此外,为了获得准确的边界框,我们将检测任务分解为多个子任务,并提出一个多头网络来完成它们。每个头部都是专门设计的,旨在学习相应任务的最佳功能,这使我们的网络可以准确检测对象。为了方便起见,我们将其命名为多头旋转对象检测器的MRDET简短。我们在两个具有挑战性的基准(即DOTA和HRSC2016)上测试了提出的MRDET,并将其与几种最新方法进行比较。我们的方法取得了非常有希望的结果,清楚地证明了其有效性。

Objects in aerial images usually have arbitrary orientations and are densely located over the ground, making them extremely challenge to be detected. Many recently developed methods attempt to solve these issues by estimating an extra orientation parameter and placing dense anchors, which will result in high model complexity and computational costs. In this paper, we propose an arbitrary-oriented region proposal network (AO-RPN) to generate oriented proposals transformed from horizontal anchors. The AO-RPN is very efficient with only a few amounts of parameters increase than the original RPN. Furthermore, to obtain accurate bounding boxes, we decouple the detection task into multiple subtasks and propose a multi-head network to accomplish them. Each head is specially designed to learn the features optimal for the corresponding task, which allows our network to detect objects accurately. We name it MRDet short for Multi-head Rotated object Detector for convenience. We test the proposed MRDet on two challenging benchmarks, i.e., DOTA and HRSC2016, and compare it with several state-of-the-art methods. Our method achieves very promising results which clearly demonstrate its effectiveness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源