论文标题

下一代农历重新反射器的二面角偏移的设计和优化

Design and optimization of dihedral angle offsets for the next generation lunar retro-reflectors

论文作者

Wu, C., Currie, D., Wellnitz, D., Behr, B.

论文摘要

Lunar Laser射程(LLR)到Apollo Retro-Refectors,其具有测试一般相对论理论最持久的实验,在过去的四十年中一直保持运行。迄今为止,随着地面天文台条件的显着改善,LLR精度的瓶颈在于复古反射器。根据NASA最近的月球项目,已经提出并实施了新一代具有预期二面角偏移的大型复古反射器,以减少其范围的不确定性小于1.0 mm。该技术依赖于反向反射剂的能力,可以抵消地面LLR观测站(LLRO)相对角速度的能力,以便可以确保LLR精度与较大的梁反射区域一起确保LLR精度。在部署中,基于阿波罗11号和15个阵列的经验成功的实心角反射器(CCR),由于对月球上的热量和灰尘问题的稳定性,已为下一代月亮反射器(NGLR)选择了下一代月亮反射器(NGLR)。在这项工作中,我们介绍了设计新的复古反射器的光学效果,鉴于各种预期的二嵌段偏移(DAOS),并通过两个制造的NGLR的测量来支持设计原理。

Lunar laser ranging (LLR) to the Apollo retro-reflectors, which features the most long-lasting experiment in testing General Relativity theories, has remained operational over the past four decades. To date, with significant improvement of ground observatory conditions, the bottleneck of LLR accuracy lies in the retro-reflectors. A new generation of large aperture retro-reflectors with intended dihedral angle offsets have been suggested and implemented based on NASA's recent lunar projects to reduce its ranging uncertainty to be less than 1.0 mm. The technique relies on the retro-reflector's ability to offset its relative angular velocity with regard to a ground LLR observatory (LLRO), so that the LLR accuracy can be ensured along with the larger area of beam reflection. In deployment, solid corner-cube reflectors (CCRs) based on empirical successes of the Apollo 11 and 15 arrays have been selected for the next generation lunar reflectors (NGLRs) due to their stability against heat and dust problems on the Moon. In this work, we present the optical effects in designing the new retro-reflectors given various sets of intended diheral angle offsets (DAOs), and support the design principles with the measurements of of two manufactured NGLRs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源