论文标题

通过预期最大化复合可能性算法相关的WishArt矩阵分类

Correlated Wishart Matrices Classification via an Expectation-Maximization Composite Likelihood-Based Algorithm

论文作者

Lan, Zhou

论文摘要

正定矩阵变异数据在计算机视觉中变得流行。区域协方差描述符(RCD)形式的计算机视觉数据描述符是正定矩阵,它提取图像的关键特征。 RCD广泛用于图像集分类。一些分类方法将RCD视为WishArt分布式随机矩阵。但是,当前大多数方法都排除了由所谓的非素信息(例如受试者的年龄和鼻子宽度等)引起的RCD之间的潜在相关性。由于难以获得相关的Wishart矩阵的关节密度函数,因此很难获得相关的WishArt矩阵。在本文中,我们提出了一种基于WishArt矩阵的期望最大化综合可能性算法来解决此问题。鉴于基于合成数据和真实数据(芝加哥面对数据集)的数值研究,我们提出的算法的性能要比不考虑由所谓的非素食信息引起的相关性的替代方法更好。上面的所有这些都证明了我们算法在未来未来的图像集分类中的引人注目的潜力。

Positive-definite matrix-variate data is becoming popular in computer vision. The computer vision data descriptors in the form of Region Covariance Descriptors (RCD) are positive definite matrices, which extract the key features of the images. The RCDs are extensively used in image set classification. Some classification methods treating RCDs as Wishart distributed random matrices are being proposed. However, the majority of the current methods preclude the potential correlation among the RCDs caused by the so-called non-voxel information (e.g., subjects' ages and nose widths, etc). Modeling correlated Wishart matrices is difficult since the joint density function of correlated Wishart matrices is difficult to be obtained. In this paper, we propose an Expectation-Maximization composite likelihood-based algorithm of Wishart matrices to tackle this issue. Given the numerical studies based on the synthetic data and the real data (Chicago face data-set), our proposed algorithm performs better than the alternative methods which do not consider the correlation caused by the so-called non-voxel information. All these above demonstrate our algorithm's compelling potential in image set classification in the coming future.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源