论文标题
不均匀连续树的紧凑性和分形维度
Compactness and fractal dimensions of inhomogeneous continuum random trees
论文作者
论文摘要
我们引入了一种新的破坏性结构,用于不均匀的连续性随机树(ICRT)。这种新结构使我们能够证明Aldous,Miermont和Pitman Arxiv:Math/0401115与LévyTrees相比,Aldous,Miermont和Pitman Arxiv猜想的紧凑度所必需的条件。我们还计算分形尺寸(Minkowski,包装,Hausdorff)。
We introduce a new stick-breaking construction for inhomogeneous continuum random trees (ICRT). This new construction allows us to prove the necessary and sufficient condition for compactness conjectured by Aldous, Miermont and Pitman arXiv:math/0401115 by comparison with Lévy trees. We also compute the fractal dimensions (Minkowski, Packing, Hausdorff).