论文标题
$ g $的第七阶重力散射:第六次牛顿后准确性的非本地贡献
Gravitational scattering at the seventh order in $G$: nonlocal contribution at the sixth post-Newtonian accuracy
论文作者
论文摘要
最近引入的二进制系统经典引力动力学的方法涉及复杂的积分(与迭代$ \ frac1r $ - 电势散射的非局限性相互作用的组合相关联),这在其分析评估方面具有抗拒的尝试。通过使用用于评估多环Feynman积分(尤其是谐波聚集体和Mellin Transform)的计算技术,我们显示了如何分析计算所有进入非旧时间的积分,这些积分在Newtonian的第六次准确性和Newton的常数($ G $中)($ g $中的第六个newtonian copplation of time-intim-intime贡献)($ g $ g $ g $ g $ g $)经典散射角)。
A recently introduced approach to the classical gravitational dynamics of binary systems involves intricate integrals (linked to a combination of nonlocal-in-time interactions with iterated $\frac1r$-potential scattering) which have so far resisted attempts at their analytical evaluation. By using computing techniques developed for the evaluation of multi-loop Feynman integrals (notably Harmonic Polylogarithms and Mellin transform) we show how to analytically compute all the integrals entering the nonlocal-in-time contribution to the classical scattering angle at the sixth post-Newtonian accuracy, and at the seventh order in Newton's constant, $G$ (corresponding to six-loop graphs in the diagrammatic representation of the classical scattering angle).