论文标题

来自双曲线黑洞的带电Renyi熵的分析临界点

Analytic critical points of charged Renyi entropies from hyperbolic black holes

论文作者

Ren, Jie

论文摘要

我们分析了在两个重力系统双重二元组中,在有限密度和零温度下,在两个引力系统双重引力系统中进行了分析研究的相变。第一个系统是Reissner-Nordstrom-Ads $ _5 $ Black Hole,该孔在零温度下具有有限的熵。第二个系统是ADS $ _5 $中充电的膨胀黑洞,该黑洞在零温度下的熵为零。使用双曲线黑洞来计算Renyi熵,而纠缠表面为球体。我们通过带电的标量字段扰动每个系统,并寻找一个零模式,该模式向极端双曲线黑洞的不稳定性发出了信号。零模式以及完整智障的绿色功能的领先顺序对于这两个系统都可以分析求解,与以前的研究相比,仅对IR(近地平线)不稳定性进行了分析治疗。

We analytically study phase transitions of holographic charged Renyi entropies in two gravitational systems dual to the $\mathcal{N}=4$ super-Yang-Mills theory at finite density and zero temperature. The first system is the Reissner-Nordstrom-AdS$_5$ black hole, which has finite entropy at zero temperature. The second system is a charged dilatonic black hole in AdS$_5$, which has zero entropy at zero temperature. Hyperbolic black holes are employed to calculate the Renyi entropies with the entangling surface being a sphere. We perturb each system by a charged scalar field, and look for a zero mode signaling the instability of the extremal hyperbolic black hole. Zero modes as well as the leading order of the full retarded Green's function are analytically solved for both systems, in contrast to previous studies in which only the IR (near horizon) instability was analytically treated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源