论文标题

评估时间网络中的结构边缘重要性

Evaluating structural edge importance in temporal networks

论文作者

Seabrook, Isobel, Barucca, Paolo, Caccioli, Fabio

论文摘要

为了监视时间金融网络中的风险,我们需要了解单个行为如何影响网络的全球演变。在这里,我们为网络边缘定义了一个结构性重要性度量 - 我们将其表示为$ L_E $。该度量是基于扰动邻接矩阵的扰动,并观察其最大特征值所得的变化。然后,我们提出了一个网络演化模型,其中该度量控制随后的边缘变化的概率。我们使用合成数据显示模型的参数与预测边缘是否会从其$ l_e $的值变化的能力有关。然后,我们估算与五个实际的财务和社交网络相关的模型参数,并研究其可预测性。这些方法在金融监管中具有应用,因此重要的是要了解个人对金融网络的变化将如何影响其全球行为。它还为网络中的光谱可预测性提供了基本的见解,并证明了光谱扰动如何成为理解网络微观和宏观特征之间相互作用的有用工具。

To monitor risk in temporal financial networks, we need to understand how individual behaviours affect the global evolution of networks. Here we define a structural importance metric - which we denote as $l_e$ - for the edges of a network. The metric is based on perturbing the adjacency matrix and observing the resultant change in its largest eigenvalues. We then propose a model of network evolution where this metric controls the probabilities of subsequent edge changes. We show using synthetic data how the parameters of the model are related to the capability of predicting whether an edge will change from its value of $l_e$. We then estimate the model parameters associated with five real financial and social networks, and we study their predictability. These methods have application in financial regulation whereby it is important to understand how individual changes to financial networks will impact their global behaviour. It also provides fundamental insights into spectral predictability in networks, and it demonstrates how spectral perturbations can be a useful tool in understanding the interplay between micro and macro features of networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源