论文标题
5D和4D SCFTS:规范的奇异性,trinions和s偶数
5d and 4d SCFTs: Canonical Singularities, Trinions and S-Dualities
论文作者
论文摘要
M理论和类型IIB字符串理论中的规范三重奇异性分别引起了5D和4D的超符合字段理论(SCFTS)。在本文中,我们研究了典型的超表面奇异性,其分辨率包含残留的末端奇异性和/或3个周期。我们专注于某些表现出这些特性的“ Trinion”奇异性。在类型IIB中,它们产生到4D $ \ MATHCAL {N} = 2 $ scfts,我们称为$ d_p^b(g)$ - trinions,它们是三个带有$ g $ symmetry的Scfts的边缘测量值。为了了解M理论中这些Trinion奇异性的5D物理学,我们将这4D和5D SCFT降低到3D $ \ Mathcal {n} = 4 $理论,从而确定电气和磁性Quivers(或更广泛地,Quiverines)。在M理论中,残留的终端奇异性产生了无质量超强的自由扇区,这些部门通常被离散地计量。这些自由扇区显示为5D SCFT的磁颤动的“丑陋”组件。毛茸茸的分辨率中的3个周期也引起了自由的超级人,但是它们的物理学更加微妙,并且它们的存在使磁颤动“不良”。我们建议使用类$ \ Mathcal {s} $实现的方法来赎回这些Quivers的坏处。我们还发现了不同的$ d_p^b(g)$ - trinions之间的新s对偶。例如,$ e_8 $ e_8 $ minahan-nemeschansky理论的某个$ e_8 $量表是$ e_8 $形的拉格朗日Quiver scft的s二。
Canonical threefold singularities in M-theory and Type IIB string theory give rise to superconformal field theories (SCFTs) in 5d and 4d, respectively. In this paper, we study canonical hypersurface singularities whose resolutions contain residual terminal singularities and/or 3-cycles. We focus on a certain class of `trinion' singularities which exhibit these properties. In Type IIB, they give rise to 4d $\mathcal{N}=2$ SCFTs that we call $D_p^b(G)$-trinions, which are marginal gaugings of three SCFTs with $G$ flavor symmetry. In order to understand the 5d physics of these trinion singularities in M-theory, we reduce these 4d and 5d SCFTs to 3d $\mathcal{N}=4$ theories, thus determining the electric and magnetic quivers (or, more generally, quiverines). In M-theory, residual terminal singularities give rise to free sectors of massless hypermultiplets, which often are discretely gauged. These free sectors appear as `ugly' components of the magnetic quiver of the 5d SCFT. The 3-cycles in the crepant resolution also give rise to free hypermultiplets, but their physics is more subtle, and their presence renders the magnetic quiver `bad'. We propose a way to redeem the badness of these quivers using a class $\mathcal{S}$ realization. We also discover new S-dualities between different $D_p^b(G)$-trinions. For instance, a certain $E_8$ gauging of the $E_8$ Minahan-Nemeschansky theory is S-dual to an $E_8$-shaped Lagrangian quiver SCFT.