论文标题
分子云中的丝状塌陷流
Filamentary collapse flow in molecular clouds
论文作者
论文摘要
我们提出了理想化的数值模拟,以考虑均匀和分层背景,后者代表扁平的云层,并具有额外的中央椭圆形增强(一个核心)的中等初始丝扰(一个核心)。两种模拟在崩溃过程中保持丝状结构,从而形成了从云到平面的分层积聚流。从那里到灯丝,从细丝到核心。在层次结构的每个步骤中,流动方向都会平稳地变化,在所研究的prestellar进化过程中,没有密度发散或在细丝轴上产生冲击。流动将吸积驱动到中心芯上,并从细丝中排出材料,从而减慢了后者的生长。结果,芯的中央密度与细丝密度的比率在时间上增加,在核心形成奇异性时发生分歧。分层的模拟可为观察到的细丝的垂直径向柱密度曲线提供最佳匹配,而均匀的模拟不会产生平坦的中央密度曲线。该结果支持最近的建议,即MC可能优先扁平结构。我们研究了丝状流可以接近准平稳状态的可能性,在这种状态下,纵向积聚在核心上平衡了丝的径向积聚。一个简单的论点表明,这种静止状态可能是系统的吸引子。我们的模拟,没有达到这个固定阶段,而是在Prestellar阶段似乎正在接近它。
We present idealized numerical simulations of prestellar gravitational collapse of a moderate initial filamentary perturbation with an additional central ellipsoidal enhancement (a core) considering a uniform, and a stratified background, the latter representing flattened clouds. Both simulations maintain the filamentary structure during the collapse, developing a hierarchical accretion flow from the cloud to the plane; from there to the filament, and from the filament to the core. The flow changes direction smoothly at every step of the hierarchy, with no density divergence nor a shock developing at the filament's axis during the studied prestellar evolution. The flow drives accretion onto the central core and drains material from the filament, slowing down the growth of the latter. As a consequence, the ratio of the central density of the core to the filament density increases in time, diverging at the time of singularity formation in the core. The stratified simulation produces the best match for observed Plummer-like radial column density profiles of filaments, while the uniform simulation does not produce a flat central density profile. This result supports recent suggestions that MCs may be preferentially flattened structures. We examine the possibility that the filamentary flow might approach a quasi-stationary regime in which the radial accretion onto the filament is balanced by the longitudinal accretion onto the core. A simple argument suggests that such a stationary state may be an attractor for the system. Our simulations, do not attain this stationary stage, but appear to be approaching it during the prestellar stage.