论文标题

大都会调整后的兰格文算法的最佳维度依赖性

Optimal dimension dependence of the Metropolis-Adjusted Langevin Algorithm

论文作者

Chewi, Sinho, Lu, Chen, Ahn, Kwangjun, Cheng, Xiang, Gouic, Thibaut Le, Rigollet, Philippe

论文摘要

取样文献中的传统智慧在流行的扩散缩放限制的支持下表明,大都会调整后的Langevin算法(MALA)的混合时间为$ O(d^{1/3})$,其中$ d $是尺寸。但是,扩散缩放极限需要对目标分布进行严格的假设,并且本质上是渐近的。相比之下,在日志平滑和强烈的对数符号分布的类别上,最著名的非质子混合时间是$ O(d)$。在这项工作中,我们确定MALA在此类目标分布上的混合时间为$ \widetildeθ(d^{1/2})$在温暖的开始下。我们的上限证明基于大都市调整的投影表征引入了一项新技术,该技术将MALA的研究降低到对Langevin SDE的经过良好研究的离散化分析,并绕过对接受概率的直接计算。

Conventional wisdom in the sampling literature, backed by a popular diffusion scaling limit, suggests that the mixing time of the Metropolis-Adjusted Langevin Algorithm (MALA) scales as $O(d^{1/3})$, where $d$ is the dimension. However, the diffusion scaling limit requires stringent assumptions on the target distribution and is asymptotic in nature. In contrast, the best known non-asymptotic mixing time bound for MALA on the class of log-smooth and strongly log-concave distributions is $O(d)$. In this work, we establish that the mixing time of MALA on this class of target distributions is $\widetildeΘ(d^{1/2})$ under a warm start. Our upper bound proof introduces a new technique based on a projection characterization of the Metropolis adjustment which reduces the study of MALA to the well-studied discretization analysis of the Langevin SDE and bypasses direct computation of the acceptance probability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源