论文标题

Wasserstein辍学

Wasserstein Dropout

论文作者

Sicking, Joachim, Akila, Maram, Pintz, Maximilian, Wirtz, Tim, Fischer, Asja, Wrobel, Stefan

论文摘要

尽管对安全机器学习至关重要,但神经网络的不确定性量化远未解决。估计神经不确定性的最新方法通常是混合的,将参数模型与明确或隐式(基于辍学的)结合在一起。我们采取了另一条途径,并提出了一种新的方法来进行回归任务的不确定性定量,即纯粹非参数的Wasserstein辍学。从技术上讲,它通过基于辍学的子网络分布来捕获局部不确定性。这是通过一个新的目标来完成的,该目标将标签分布与模型分布之间的Wasserstein距离最小化。广泛的经验分析表明,在产生更准确和稳定的不确定性估计方面,Wasserstein辍学率在香草测试数据和分布变化方面都优于最先进的方法。

Despite of its importance for safe machine learning, uncertainty quantification for neural networks is far from being solved. State-of-the-art approaches to estimate neural uncertainties are often hybrid, combining parametric models with explicit or implicit (dropout-based) ensembling. We take another pathway and propose a novel approach to uncertainty quantification for regression tasks, Wasserstein dropout, that is purely non-parametric. Technically, it captures aleatoric uncertainty by means of dropout-based sub-network distributions. This is accomplished by a new objective which minimizes the Wasserstein distance between the label distribution and the model distribution. An extensive empirical analysis shows that Wasserstein dropout outperforms state-of-the-art methods, on vanilla test data as well as under distributional shift, in terms of producing more accurate and stable uncertainty estimates.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源