论文标题

与Euler $ ϕ $函数有关的图

A graph related to Euler $ϕ$ function

论文作者

Ghanbari, Nima, Alikhani, Saeid

论文摘要

Euler函数$ ϕ(n)$是小于$ n $的正整数数量,相对较高至$ n $。假设$ ϕ^1(n)= ϕ(n)$和$ ϕ^i(n)= ϕ(ϕ^{i-1}(n))$。令$ a \ subseteq \ mathbb {n} $,$ a_ϕ = \ {ϕ^k(n)| n \在a,k \ in \ mathbb {n} \ cup \ {0 \} \}中。 r,s \ in v,ϕ(r)= s \} $。我们说,如果存在一组自然数量$ a $,则图$ h $是$ g_ϕ $ -graph,以便$ h = g_ϕ(a)$。在本文中,我们研究了图$ g_ϕ(a)$,并研究了一些特定的图形和一些化学树,为$ g_ϕ $ -graph。

Euler function $ϕ(n)$ is the number of positive integers less than $n$ and relatively prime to $n$. Suppose that $ϕ^1(n)=ϕ(n)$ and $ϕ^i(n)=ϕ(ϕ^{i-1}(n))$. Let $A\subseteq \mathbb{N}$, and $A_ϕ=\{ ϕ^k(n)| n\in A , k\in \mathbb{N} \cup \{0\}\}.$ We consider a graph $G_ϕ(A)=(V,E)$, where $V=A_ϕ$ and $E=\{\{r,s\}| r,s\in V, ϕ(r)=s \}$. We say a graph $H$ is a $G_ϕ$-graph, if there exists a set of natural numbers $A$, such that $H=G_ϕ(A)$. In this paper we study the graph $G_ϕ(A)$ and investigate some specific graphs and some chemical trees as $G_ϕ$-graph.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源