论文标题
具有正标曲率的三个脉冲的腰部不平等
Waist inequality for 3-manifolds with positive scalar curvature
论文作者
论文摘要
我们用标态曲率$ r_h \geqλ_0> 0 $ 0 $构建紧凑型三个manifolds $(m^3,h)$的奇异叶子。这扩展了格罗莫夫律森和玛克斯恩维斯的Urysohn和腰部不平等。
We construct singular foliations of compact three-manifolds $(M^3,h)$ with scalar curvature $R_h\geq Λ_0>0$ by surfaces of controlled area, diameter and genus. This extends Urysohn and waist inequalities of Gromov-Lawson and Marques-Neves.