论文标题
MGII排放响应的时间延迟,用于亮度的数量NE 0435-4312:朝着宇宙学中应用高精度半径 - 露光性关系
Time Delay of MgII Emission Response for the Luminous Quasar HE 0435-4312: Towards Application of High-Accretor Radius-Luminosity Relation in Cosmology
论文作者
论文摘要
利用六年的光学测量监测,与南部非洲大型望远镜(盐)一起进行光学数据($ z = 1.2231 $),并结合光度数据(Catalina,ogle,ogle,alticam和bmt),我们确定了剩下时间的时间,我们确定了$ 2的$ 296^$ 296^{+1396 |使用七个不同的时间延迟推理方法,MGII宽线发射和电离连续性。使用引导方法,先前的加权概率函数以及通过分析不均匀采样的模拟光曲线来减轻伪像的时间延迟峰和别名。 MGII排放的变化很大,分数可变性为$ \ sim 5.4 \%$,这与连续变异性($ \ sim 4.8 \%$)相当。由于其高亮度($ l_ {3000} = 10^{46.4} \,{\ rm erg \ \,s^{ - 1}} $),源对进一步减少沿MGII的半径radius luminosity的关系及其扩展的散布,尤其是$ actmplem nimplem n of $ accret $ nss n of $ nsem $ nss n oss n oss n of $ nist oss n of $ nsem of $ 经过考虑的。这打开了使用基于MGII的高级半径露光性关系来限制宇宙学参数的可能性。使用当前的27个混响映射来源的样本,最合适的宇宙学参数$(ω_ {\ rm m},ω_λ)=(0.19; 0.62)$与1 $σ$置信度级别内的标准宇宙学模型一致。
Using the six years of the spectroscopic monitoring of the luminous quasar HE 0435-4312 ($z=1.2231$) with the Southern African Large Telescope (SALT), in combination with the photometric data (CATALINA, OGLE, SALTICAM, and BMT), we determined the rest-frame time-delay of $296^{+13}_{-14}$ days between the MgII broad-line emission and the ionizing continuum using seven different time-delay inference methods. Artefact time-delay peaks and aliases were mitigated using the bootstrap method, prior weighting probability function as well as by analyzing unevenly sampled mock light curves. The MgII emission is considerably variable with the fractional variability of $\sim 5.4\%$, which is comparable to the continuum variability ($\sim 4.8\%$). Because of its high luminosity ($L_{3000}=10^{46.4}\,{\rm erg\,s^{-1}}$), the source is beneficial for a further reduction of the scatter along the MgII-based radius-luminosity relation and its extended versions, especially when the high-accreting subsample that has an RMS scatter of $\sim 0.2$ dex is considered. This opens up a possibility to use the high-accretor MgII-based radius-luminosity relation for constraining cosmological parameters. With the current sample of 27 reverberation-mapped sources, the best-fit cosmological parameters $(Ω_{\rm m}, Ω_Λ)=(0.19; 0.62)$ are consistent with the standard cosmological model within 1$σ$ confidence level.