论文标题
代码,立方体和图形设计
Codes, Cubes, and Graphical Designs
论文作者
论文摘要
图形设计是球形设计扩展到图形上函数的扩展。我们将线性代码连接到立方体图上的图形设计,并表明锤子代码特别有效的图形设计。我们表明,即使在高度结构化的图中,图形设计也不同于相关的极端设计概念,距离图中的最大稳定集和关联方案上的$ t $ designs。
Graphical designs are an extension of spherical designs to functions on graphs. We connect linear codes to graphical designs on cube graphs, and show that the Hamming code in particular is a highly effective graphical design. We show that even in highly structured graphs, graphical designs are distinct from the related concepts of extremal designs, maximum stable sets in distance graphs, and $t$-designs on association schemes.