论文标题
通过选择深度Q学习的子目标来推理目标推理
Goal Reasoning by Selecting Subgoals with Deep Q-Learning
论文作者
论文摘要
在这项工作中,我们提出了一种目标推理方法,该方法学会选择具有深度Q学习的子目标,以便在面对情况下限制紧密的情况(例如在线执行系统)时减少计划者的负载。我们已经设计了一个基于CNN的目标选择模块,并在标准的视频游戏环境上训练了它,在不同的游戏(计划域)和级别(计划问题)上对其进行了测试,以衡量其概括能力。在将其性能与令人满意的计划者进行比较时,获得的结果表明,这两种方法都能找到质量良好的计划,但是我们的方法大大减少了计划时间。我们得出结论,我们的方法可以成功应用于不同类型的域(游戏),并在对同一游戏(域)的新级别(问题)评估时显示出良好的概括属性。
In this work we propose a goal reasoning method which learns to select subgoals with Deep Q-Learning in order to decrease the load of a planner when faced with scenarios with tight time restrictions, such as online execution systems. We have designed a CNN-based goal selection module and trained it on a standard video game environment, testing it on different games (planning domains) and levels (planning problems) to measure its generalization abilities. When comparing its performance with a satisfying planner, the results obtained show both approaches are able to find plans of good quality, but our method greatly decreases planning time. We conclude our approach can be successfully applied to different types of domains (games), and shows good generalization properties when evaluated on new levels (problems) of the same game (domain).