论文标题

使用异质临床和结果数据的混合模型脑损伤预后的混合模型框架

Mixture Model Framework for Traumatic Brain Injury Prognosis Using Heterogeneous Clinical and Outcome Data

论文作者

Kaplan, Alan D., Cheng, Qi, Mohan, K. Aditya, Nelson, Lindsay D., Jain, Sonia, Levin, Harvey, Torres-Espin, Abel, Chou, Austin, Huie, J. Russell, Ferguson, Adam R., McCrea, Michael, Giacino, Joseph, Sundaram, Shivshankar, Markowitz, Amy J., Manley, Geoffrey T.

论文摘要

创伤性脑损伤(TBI)结局的预后既不容易或从临床指标中准确确定。这部分是由于对大脑造成的损害的异质性,最终导致了各种各样和复杂的结果。在许多不同的数据元素上使用数据驱动的方法来描述这一大部分结果,从而坚强地描述了TBI患者康复的细微差异。在这项工作中,我们开发了一种建模与TBI相关的大型异质数据类型的方法。我们的方法旨在用于具有缺失值的混合连续变量和离散变量的概率表示。该模型在数据集上进行了培训,其中包括各种数据类型,包括人口统计学,基于血液的生物标志物和成像发现。此外,它包括3、6和12个月后的一组临床结果评估。该模型用于在无监督的学习环境中将患者分为不同的组。我们使用该模型使用输入数据来推断结果,并表明输入数据的收集会降低基线方法上结果的不确定性。此外,我们量化了一种可能用于自我评估预后的外推风险的可能性评分技术的性能。

Prognoses of Traumatic Brain Injury (TBI) outcomes are neither easily nor accurately determined from clinical indicators. This is due in part to the heterogeneity of damage inflicted to the brain, ultimately resulting in diverse and complex outcomes. Using a data-driven approach on many distinct data elements may be necessary to describe this large set of outcomes and thereby robustly depict the nuanced differences among TBI patients' recovery. In this work, we develop a method for modeling large heterogeneous data types relevant to TBI. Our approach is geared toward the probabilistic representation of mixed continuous and discrete variables with missing values. The model is trained on a dataset encompassing a variety of data types, including demographics, blood-based biomarkers, and imaging findings. In addition, it includes a set of clinical outcome assessments at 3, 6, and 12 months post-injury. The model is used to stratify patients into distinct groups in an unsupervised learning setting. We use the model to infer outcomes using input data, and show that the collection of input data reduces uncertainty of outcomes over a baseline approach. In addition, we quantify the performance of a likelihood scoring technique that can be used to self-evaluate the extrapolation risk of prognosis on unseen patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源