论文标题

最初的纠缠,纠缠的单位和完全正面的地图

Initial entanglement, entangling unitaries, and completely positive maps

论文作者

Jagadish, Vinayak, Srikanth, R., Petruccione, Francesco

论文摘要

各种作者研究了系统与环境之间初始相关性的条件问题,这些问题已导致完全正(CP)或不完全正面的映射(NCP)地图。可以看出两种研究线:一个与最初相关性的家庭有关,这些家族在系统和环境上使用任意联合统一的情况下诱导CP动态;另一个与可能高度纠缠的特定初始状态有关的。在这里,我们研究了后一个问题,并突出显示了初始相关性与统一应用之间的相互作用。特别是,对于几乎所有最初的纠缠状态,人们都可以提供无限的许多联合单位,这些单位人士在系统上产生CP动力学。限制在初始纯净的状态的情况下,我们获得了这些单位集合的尺寸的缩放,并表明它在所有可能的相互作用统一的集合中的度量为零。

The problem of conditions on the initial correlations between the system and the environment that lead to completely positive (CP) or not-completely positive (NCP) maps has been studied by various authors. Two lines of study may be discerned: one concerned with families of initial correlations that induce CP dynamics under the application of an arbitrary joint unitary on the system and environment; the other concerned with specific initial states that may be highly entangled. Here we study the latter problem, and highlight the interplay between the initial correlations and the unitary applied. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源