论文标题

随机矩阵光谱形式的双自动量子电路的形式

Random Matrix Spectral Form Factor of Dual-Unitary Quantum Circuits

论文作者

Bertini, Bruno, Kos, Pavel, Prosen, Tomaz

论文摘要

我们研究了共享所谓的“双单位性”属性的$ d $ Level Systems(Qudits)的一类类似砖砌的量子电路。也就是说,这些系统不仅在时间方向传播时,而且在空间方向传播时会产生统一动力学。我们考虑时空同质(floquet)电路,并使用淬火的单位点障碍扰动它们,即通过应用独立的单位站点随机单位,从$ {\ rm su}(d)$上绘制的独立非单明性分布绘制的独立单位随机单位。在电路的每一层之后,一个集中在身份周围。我们将长链限制的时间$ t $在时间上确定为$ t $站点的Qudit环上有限运算符的尺寸。对于Qubits $(d = 2)$的一般双统一电路,并将其扩展到更高的$ d> 2 $,我们提供了明确的构建通勤者的构造,并证明光谱形式与所有$ t $的圆形单一配乐完全匹配,如果只有本地的2 Qubit gates与本地的2 Qubit gates不同于换交(非交换门)。我们讨论并部分证明了我们的结果可能扩展到较弱的(更奇异)的平均疾病形式,以及具有时间反向对称性的量子电路,并计算频谱形式的较高矩。

We investigate a class of brickwork-like quantum circuits on chains of $d-$level systems (qudits) that share the so-called `dual unitarity' property. Namely, these systems generate unitary dynamics not only when propagating in the time direction, but also when propagating in the space direction. We consider space-time homogeneous (Floquet) circuits and perturb them with a quenched single-site disorder, i.e. by applying independent single site random unitaries drawn from arbitrary non-singular distribution over ${\rm SU}(d)$, e.g. one concentrated around the identity, after each layer of the circuit. We identify the spectral form factor at time $t$ in the limit of long chains as the dimension of the commutant of a finite set of operators on a qudit ring of $t$ sites. For general dual unitary circuits of qubits $(d=2)$ and a family of their extensions to higher $d>2$, we provide explicit construction of the commutant and prove that spectral form factor exactly matches the prediction of circular unitary ensemble for all $t$, if only the local 2-qubit gates are different from a SWAP (non-interacting gate). We discuss and partly prove possible extensions of our results to a weaker (more singular) forms of disorder averaging, as well as to quantum circuits with time-reversal symmetry, and to computing higher moments of the spectral form factor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源