论文标题

用于模拟分子和材料激发状态特性的机器学习介电筛选

Machine Learning Dielectric Screening for the Simulation of Excited State Properties of Molecules and Materials

论文作者

Dong, Sijia S., Govoni, Marco, Galli, Giulia

论文摘要

对分子和材料的吸收光谱的准确计算对于理解和合理设计的整个系统至关重要。为电子孔对求解Bethe-Salpeter方程(BSE)通常会产生对吸收光谱的准确预测,但计算上的昂贵,尤其是如果需要用于多种构型的光谱的热平均值。我们提出了一种基于机器学习的方法,以评估输入吸收光谱定义的关键数量:介电筛选。我们表明,我们的方法产生了一个模型的筛选模型,该模型可在第一原理分子动力学模拟中采样的多个配置之间转移。因此,它导致有限温度光谱的计算效率有了很大的提高。我们获得了50至500个原子的系统,包括液体,固体,纳米结构和固体/液体界面,获得了一到两个数量级的计算收益。重要的是,此处得出的介电筛选模型不仅可以用于BSE解决方案中,还可以用于开发均质和异质系统的时间依赖性密度功能理论(TDDFT)计算的功能。总体而言,我们的工作提供了一种将机器学习与电子结构计算相结合的策略,以加快激发状态特性的第一原理模拟。

Accurate and efficient calculations of absorption spectra of molecules and materials are essential for the understanding and rational design of broad classes of systems. Solving the Bethe-Salpeter equation (BSE) for electron-hole pairs usually yields accurate predictions of absorption spectra, but it is computationally expensive, especially if thermal averages of spectra computed for multiple configurations are required. We present a method based on machine learning to evaluate a key quantity entering the definition of absorption spectra: the dielectric screening. We show that our approach yields a model for the screening that is transferable between multiple configurations sampled during first principles molecular dynamics simulations; hence it leads to a substantial improvement in the efficiency of calculations of finite temperature spectra. We obtained computational gains of one to two orders of magnitude for systems with 50 to 500 atoms, including liquids, solids, nanostructures, and solid/liquid interfaces. Importantly, the models of dielectric screening derived here may be used not only in the solution of the BSE but also in developing functionals for time-dependent density functional theory (TDDFT) calculations of homogeneous and heterogeneous systems. Overall, our work provides a strategy to combine machine learning with electronic structure calculations to accelerate first principles simulations of excited-state properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源