论文标题
在两个组成驱动的扩散模型中的Kardar-Parisi-Zhang普遍性
Kardar-Parisi-Zhang universality in two-component driven diffusive models: Symmetry and renormalization group perspectives
论文作者
论文摘要
我们阐明了在一类两组一维(1D)驱动的扩散系统中,时间依赖性相关函数的通用时空扩展函数,该系统由两个耦合的不对称排斥过程组成。通过使用扰动重新归一化组框架,我们表明相关的缩放指数的值与1D Kardar-Parisi-Zhang(KPZ)方程相同。我们将这些通用缩放指数与模型方程的对称性联系起来。因此,我们确定这些模型属于1D KPZ通用类别。
We elucidate the universal spatio-temporal scaling properties of the time-dependent correlation functions in a class of two-component one-dimensional (1D) driven diffusive system that consists of two coupled asymmetric exclusion process. By using a perturbative renormalization group framework, we show that the relevant scaling exponents have values same as those for the 1D Kardar-Parisi-Zhang (KPZ) equation. We connect these universal scaling exponents with the symmetries of the model equations. We thus establish that these models belong to the 1D KPZ universality class.