论文标题

在两个组成驱动的扩散模型中的Kardar-Parisi-Zhang普遍性

Kardar-Parisi-Zhang universality in two-component driven diffusive models: Symmetry and renormalization group perspectives

论文作者

Dolai, Pritha, Simha, Aditi, Basu, Abhik

论文摘要

我们阐明了在一类两组一维(1D)驱动的扩散系统中,时间依赖性相关函数的通用时空扩展函数,该系统由两个耦合的不对称排斥过程组成。通过使用扰动重新归一化组框架,我们表明相关的缩放指数的值与1D Kardar-Parisi-Zhang(KPZ)方程相同。我们将这些通用缩放指数与模型方程的对称性联系起来。因此,我们确定这些模型属于1D KPZ通用类别。

We elucidate the universal spatio-temporal scaling properties of the time-dependent correlation functions in a class of two-component one-dimensional (1D) driven diffusive system that consists of two coupled asymmetric exclusion process. By using a perturbative renormalization group framework, we show that the relevant scaling exponents have values same as those for the 1D Kardar-Parisi-Zhang (KPZ) equation. We connect these universal scaling exponents with the symmetries of the model equations. We thus establish that these models belong to the 1D KPZ universality class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源