论文标题
COVID-19:疾病负担估计的血清神父的最佳设计
COVID-19: Optimal Design of Serosurveys for Disease Burden Estimation
论文作者
论文摘要
我们提供了一种方法论,流行病学家可以为调查提供最佳设计,该调查的目的是估计人口的疾病负担。对于给定预算为$ c $卢比的血清疗法,指定的一套具有成本,敏感性和特殊性的测试集,我们在四种不同的情况下显示了最佳设计的存在,包括众所周知的C-最佳设计。结果的有用性通过数值示例说明。我们的结果适用于广泛的流行病学调查,因为该假设是该估计的Fisher-Furnformation矩阵满足均匀的确定标准。
We provide a methodology by which an epidemiologist may arrive at an optimal design for a survey whose goal is to estimate the disease burden in a population. For serosurveys with a given budget of $C$ rupees, a specified set of tests with costs, sensitivities, and specificities, we show the existence of optimal designs in four different contexts, including the well known c-optimal design. Usefulness of the results are illustrated via numerical examples. Our results are applicable to a wide range of epidemiological surveys under the assumptions that the estimate's Fisher-information matrix satisfies a uniform positive definite criterion.