论文标题

引力动力:哈密顿范式的新型转变

Gravitational dynamics: A novel shift in the Hamiltonian paradigm

论文作者

Ashtekar, Abhay, Varadarajan, Madhavan

论文摘要

众所周知,爱因斯坦的方程在基于杨米尔斯相位空间的哈密顿框架中采用简单的多项式形式。我们在此框架中重新检查了引力动力学,并表明重力场的{\ em Time}的演变可以被重新表达为(e \ em空间}方向中新型移位矢量场的(量规协方差)。因此,哈密顿约束产生的规范变换在杨麦尔米尔斯相位空间上获得了几何解释,类似于差异性约束所产生的。在经典的一般相对论中,这种几何解释显着简化了计算,也阐明了“可整合”(反)自偶联扇区中的动力学与完整理论之间的关系。对于量子重力,它提供了一个出发点,以更令人满意的方式完成DIRAC量化程序,以实现一般相对论。该规程理论的观点也可能有助于扩展“双重复制”想法,将爱因斯坦和杨米尔斯动态与非扰动政权联系起来。最后,数学物理学界也可能引起广泛的,量规协方差衍生物的概念,因为它暗示了一些尚未探索的潜在富裕结构。

It is well known that Einstein's equations assume a simple polynomial form in the Hamiltonian framework based on a Yang-Mills phase space. We re-examine the gravitational dynamics in this framework and show that {\em time} evolution of the gravitational field can be re-expressed as (a gauge covariant generalization of) the Lie derivative along a novel shift vector field in {\em spatial} directions. Thus, the canonical transformation generated by the Hamiltonian constraint acquires a geometrical interpretation on the Yang-Mills phase space, similar to that generated by the diffeomorphism constraint. In classical general relativity this geometrical interpretation significantly simplifies calculations and also illuminates the relation between dynamics in the `integrable' (anti)self-dual sector and in the full theory. For quantum gravity, it provides a point of departure to complete the Dirac quantization program for general relativity in a more satisfactory fashion. This gauge theory perspective may also be helpful in extending the `double copy' ideas relating the Einstein and Yang-Mills dynamics to a non-perturbative regime. Finally, the notion of generalized, gauge covariant Lie derivative may also be of interest to the mathematical physics community as it hints at some potentially rich structures that have not been explored.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源