论文标题

高光谱压缩快照重建的无监督的空间谱网络学习

Unsupervised Spatial-spectral Network Learning for Hyperspectral Compressive Snapshot Reconstruction

论文作者

Sun, Yubao, Yang, Ying, Liu, Qingshan, Kankanhalli, Mohan

论文摘要

高光谱压缩成像利用压缩感应理论在没有时间扫描的情况下实现编码的孔径快照测量,并且在单个集成期间,二维投影捕获了整个三维空间数据。它的核心问题是如何使用压缩传感重建算法重建潜在的高光谱图像。由于不同光谱成像设备的光谱响应特性和波长范围的多样性,以前的作品通常不足以捕获复杂的光谱变化或缺乏对新的高光谱成像仪的适应能力。为了解决这些问题,我们提出了一个无监督的空间光谱网络,以仅从压缩快照测量中重建高光谱图像。所提出的网络充当有条件的生成模型,该模型以快照测量为条件,并利用了空间光谱注意模块来捕获高光谱图像的关节空间光谱相关性。优化网络参数,以确保根据成像模型与给定快照测量值紧密匹配,因此提出的网络可以适应不同的成像设置,从而可以固有地增强网络的适用性。对多个数据集进行的广泛实验表明,与最新方法相比,我们的网络可以实现更好的重建结果。

Hyperspectral compressive imaging takes advantage of compressive sensing theory to achieve coded aperture snapshot measurement without temporal scanning, and the entire three-dimensional spatial-spectral data is captured by a two-dimensional projection during a single integration period. Its core issue is how to reconstruct the underlying hyperspectral image using compressive sensing reconstruction algorithms. Due to the diversity in the spectral response characteristics and wavelength range of different spectral imaging devices, previous works are often inadequate to capture complex spectral variations or lack the adaptive capacity to new hyperspectral imagers. In order to address these issues, we propose an unsupervised spatial-spectral network to reconstruct hyperspectral images only from the compressive snapshot measurement. The proposed network acts as a conditional generative model conditioned on the snapshot measurement, and it exploits the spatial-spectral attention module to capture the joint spatial-spectral correlation of hyperspectral images. The network parameters are optimized to make sure that the network output can closely match the given snapshot measurement according to the imaging model, thus the proposed network can adapt to different imaging settings, which can inherently enhance the applicability of the network. Extensive experiments upon multiple datasets demonstrate that our network can achieve better reconstruction results than the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源