论文标题
双曲线超空间和超级侵权人表面
Hyperbolic Superspaces and Super-Riemann Surfaces
论文作者
论文摘要
在本文中,我们将在Manin的论文“三维双曲几何形状为$ \ Infty $ -ADIC ARAKELOV几何形状”中推广一些结果。更准确地说,查看$ \ mathbb {c}^{1 | 1} $作为双曲线超空间的边界$ t^{1 | 1} $是通过$ \ mathcal {h}^{3 | 2} $中的SuperGeodesics派生的一些数据。
In this paper, we will generalize some results in Manin's paper "Three-dimensional hyperbolic geometry as $\infty$-adic Arakelov geometry" to the supergeometric setting. More precisely, viewing $\mathbb{C}^{1|1}$ as the boundary of the hyperbolic superspace $\mathcal{H}^{3|2}$, we reexpress the super-Green functions on the supersphere $\hat{\mathbb{C}}^{1|1}$ and the supertorus $T^{1|1}$ by some data derived from the supergeodesics in $\mathcal{H}^{3|2}$.