论文标题

渐进的一击人解析

Progressive One-shot Human Parsing

论文作者

He, Haoyu, Zhang, Jing, Thuraisingham, Bhavani, Tao, Dacheng

论文摘要

先前的人类解析模型仅限于将人解析为培训数据中预定的课程,这并不灵活以推广到不见一类,例如时尚分析中的新服装。在本文中,我们提出了一个名为“人类解析”(OSHP)的新问题,该问题需要将人解析为任何单个参考示例定义的一个开放的参考类。在培训期间,仅暴露了培训集中定义的基础课程,这可以与参考课的一部分重叠。在本文中,我们设计了一个新型的渐进式一声解析网络(POPNET),以应对两个关键挑战,即测试偏见和小规模。 PopNet由两个协作度量学习模块组成,名为“注意指南”模块和最近的质心模块,它们可以学习基础类别的代表性原型,并迅速传递在测试过程中看不见类的能力,从而减少测试偏差。此外,Popnet采用了一个进步的人类解析框架,可以在粗粒度上纳入父母班级的知识,以帮助识别出细粒度的后代阶级,从而处理小规模的问题。针对OSHP量身定制的ATR-OS基准测试的实验表明,Popnet的表现优于其他代表性的单发段模型,并建立了强大的基线。可以在https://github.com/charleshhy/one-shot-human-parsing上找到源代码。

Prior human parsing models are limited to parsing humans into classes pre-defined in the training data, which is not flexible to generalize to unseen classes, e.g., new clothing in fashion analysis. In this paper, we propose a new problem named one-shot human parsing (OSHP) that requires to parse human into an open set of reference classes defined by any single reference example. During training, only base classes defined in the training set are exposed, which can overlap with part of reference classes. In this paper, we devise a novel Progressive One-shot Parsing network (POPNet) to address two critical challenges , i.e., testing bias and small sizes. POPNet consists of two collaborative metric learning modules named Attention Guidance Module and Nearest Centroid Module, which can learn representative prototypes for base classes and quickly transfer the ability to unseen classes during testing, thereby reducing testing bias. Moreover, POPNet adopts a progressive human parsing framework that can incorporate the learned knowledge of parent classes at the coarse granularity to help recognize the descendant classes at the fine granularity, thereby handling the small sizes issue. Experiments on the ATR-OS benchmark tailored for OSHP demonstrate POPNet outperforms other representative one-shot segmentation models by large margins and establishes a strong baseline. Source code can be found at https://github.com/Charleshhy/One-shot-Human-Parsing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源