论文标题

有限场中的多项式罗斯定理

A Polynomial Roth Theorem for Corners in Finite Fields

论文作者

Han, Rui, Lacey, Michael T, Yang, Fan

论文摘要

我们证明了有限场设置中多项式角的Roth型定理。令$ ϕ_1 $和$ ϕ_2 $为两个不同程度的多项式。对于足够大的素数$ p $,任何子集$ a \ subset \ mathbb f_p \ times \ times \ mathbb f_p $带有$ \ lvert a \ rvert a \ rvert> p ^{2 - \ frac1 {16}} $包含三个点$ (y))$。关于$ \ Mathbb f_p $的这些问题的研究由Bourgain和Chang发起。我们的定理适应了Dong,Li和Sawin的论点,尤其依赖于N. Katz确定的深层类型不平等。

We prove a Roth type theorem for polynomial corners in the finite field setting. Let $ϕ_1$ and $ϕ_2$ be two polynomials of distinct degree. For sufficiently large primes $p$, any subset $ A \subset \mathbb F_p \times \mathbb F_p$ with $ \lvert A\rvert > p ^{2 - \frac1{16}} $ contains three points $ (x_1, x_2) , (x_1 + ϕ_1 (y), x_2), (x_1, x_2 + ϕ_2 (y))$. The study of these questions on $ \mathbb F_p$ was started by Bourgain and Chang. Our Theorem adapts the argument of Dong, Li and Sawin, in particular relying upon deep Weil type inequalities established by N. Katz.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源