论文标题

混沌自旋链中的温度依赖能量扩散

Temperature Dependent Energy Diffusion in Chaotic Spin Chains

论文作者

Zanoci, Cristian, Swingle, Brian

论文摘要

我们使用开放的系统方法研究了两个混乱的量子旋转链,一个倾斜的田地模型和XZ模型中能量扩散的温度依赖性。我们通过将链耦合到其边界处的热浴中引入能量不平衡,并使用矩阵产品操作员ANSATZ用于密度矩阵,研究所得的Lindblad动力学的非平衡稳态。我们通过将稳态中的局部降低密度矩阵与均匀热状态的局部降低密度矩阵进行比较来定义有效的局部温度曲线。然后,我们测量各种驱动温度的能量电流,并提取能量扩散常数的温度依赖性。对于ISING模型,我们能够研究远低于能量差距的温度,并找到稀有的激发状态,而稀有三体碰撞控制能量扩散。动力学模型正确地预测了在低温下观察到的能量扩散常数的指数增加。对于XZ模型,我们只能相对于能量差距访问高温至高温,并且我们表明数据通过在无限温度极限周围的膨胀来很好地描述。我们还讨论了特定驾驶方案的局限性,并建议可以使用较大的浴缸进入较低的温度。

We study the temperature dependence of energy diffusion in two chaotic gapped quantum spin chains, a tilted-field Ising model and an XZ model, using an open system approach. We introduce an energy imbalance by coupling the chain to thermal baths at its boundary and study the non-equilibrium steady states of the resulting Lindblad dynamics using a matrix product operator ansatz for the density matrix. We define an effective local temperature profile by comparing local reduced density matrices in the steady state to those of a uniform thermal state. We then measure the energy current for a variety of driving temperatures and extract the temperature dependence of the energy diffusion constant. For the Ising model, we are able to study temperatures well below the energy gap and find a regime of dilute excitations where rare three-body collisions control energy diffusion. A kinetic model correctly predicts the observed exponential increase of the energy diffusion constant at low temperatures. For the XZ model, we are only able to access intermediate to high temperatures relative to the energy gap and we show that the data is well described by an expansion around the infinite temperature limit. We also discuss the limitations of the particular driving scheme and suggest that lower temperatures can be accessed using larger baths.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源