论文标题
多路设计的最佳性
Optimality of multi-way designs
论文作者
论文摘要
在本文中,我们研究了在多路异质性设置中某种类型设计的最佳方面。这些是通过块因子(potb)的计划的``双重的''。在这里,按照主要效应计划的双重(例如$ρ$),我们的意思是指在多路的异质性设置中的设计,从$ρ$获得的设计中,通过互换块的作用和治疗因素的效果和治疗因素。具体地构建了一系列普遍的potber,我们可以构建一系列普遍的实验,以供普遍的实验,以供米尔特(Mor)构建,以供众所周知,以供普遍的potics实验。 (1996年)。 接下来,我们构建了另一系列的多路设计,并证明了它们的M-乐曲,从而概括了Bagchi和Shah(1989)的结果。可以注意的是,M型临时性包括所有常用的最佳标准,例如A-,D-和E-Oviltimality。
In this paper we study optimality aspects of a certain type of designs in a multi-way heterogeneity setting. These are ``duals" of plans orthogonal through the block factor (POTB). Here by the dual of a main effect plan (say $ρ$) we mean a design in a multi-way heterogeneity setting obtained from $ρ$ by interchanging the roles of the block factors and the treatment factors. Specifically, we take up two series of universally optimal POTBs for symmetrical experiments constructed in Morgan and Uddin (1996). We show that the duals of these plans, as multi-way designs, satisfy M-optimality. Next, we construct another series of multiway designs and proved their M-optimality, thereby generalising the result of Bagchi and Shah (1989). It may be noted that M-optimality includes all commonly used optimality criteria like A-, D- and E-optimality.