论文标题
用半密布表示理论的代数超级组分类的两个几何证明
Two geometric proofs of the classification of algebraic supergroups with semisimple representation theory
论文作者
论文摘要
我们提供了两个新颖的证据,证明已知仿期代数超级组的已知分类$ g $,使得$ \ operatatorName {rep} g $是半imple。这些证据是出于几何动机的,尽管两者都依赖于代数的引理,该代数是$ \ mathfrak {osp}(1 | 2n)$中的$ \ mathfrak jefterma。
We present two novel proofs of the known classification of connected affine algebraic supergroups $G$ such that $\operatorname{Rep}G$ is semisimple. The proofs are geometrically motivated, although both rely on an algebraic lemma that characterizes $\mathfrak{osp}(1|2n)$ amongst simple Lie superalgebras.