论文标题
通过各种量子复发神经网络学习时间数据
Learning temporal data with variational quantum recurrent neural network
论文作者
论文摘要
我们提出了一种使用参数化量子电路学习时间数据的方法。我们使用的电路具有与复发性神经网络相似的结构,该结构是用于此类机器学习任务的标准方法之一。电路中的一些量楼用于记忆过去的数据,而其他量子位则在每个时间步骤中测量和初始化,以获得预测并编码新的输入数据。所提出的方法利用张量产品结构来获得相对于输入的非线性。完全可控制的集合量子系统(例如NMR量子计算机)是该建议的实验平台的合适选择。我们通过简单的数值模拟演示了它的能力,在该模拟中,我们测试了预测余弦和三角波和量子自旋动力学的任务的提议方法。最后,我们分析了其在数值模拟中Qubits之间其相互作用强度的依赖性,并发现强度的范围适当。这项工作提供了一种利用复杂量子动态来学习时间数据的方法。
We propose a method for learning temporal data using a parametrized quantum circuit. We use the circuit that has a similar structure as the recurrent neural network which is one of the standard approaches employed for this type of machine learning task. Some of the qubits in the circuit are utilized for memorizing past data, while others are measured and initialized at each time step for obtaining predictions and encoding a new input datum. The proposed approach utilizes the tensor product structure to get nonlinearity with respect to the inputs. Fully controllable, ensemble quantum systems such as an NMR quantum computer is a suitable choice of an experimental platform for this proposal. We demonstrate its capability with Simple numerical simulations, in which we test the proposed method for the task of predicting cosine and triangular waves and quantum spin dynamics. Finally, we analyze the dependency of its performance on the interaction strength among the qubits in numerical simulation and find that there is an appropriate range of the strength. This work provides a way to exploit complex quantum dynamics for learning temporal data.