论文标题
非线性Tikhonov在Hilbert鳞片中的正规化和过度厚度的惩罚:检查平衡原则
Nonlinear Tikhonov regularization in Hilbert scales with oversmoothing penalty: inspecting balancing principles
论文作者
论文摘要
对非线性不良方程的Tikhonov正则化的分析是平稳性促进惩罚的重要主题。侧重于希尔伯特量表模型,罚款罚款的案例,即,当罚款以无限解决方案获得无限解决方案时,人们获得了越来越多的利益。所考虑的非线性结构如研究B. Hofmann和P.Mathé所述。 Tikhonov正规化对希尔伯特量表中的非线性不良问题的过度厚度罚款。逆问题,2018年。这种分析可以解决两个基本问题。什么时候可以实现订单最佳重建?如何选择正则化参数?本研究通过两个主要方面进行了补充。首先,将误差分解为平滑度依赖性,并得出(平滑度独立于)噪声传播项,涵盖了各种光滑条件。其次,提出了通过平衡原理选择参数。详细的讨论涵盖了通过平衡参数选择的一些历史和变化,在哪些条件下,这种平衡原理产生了最佳的重建。基于某些指数增长模型的数值案例研究提供了其他见解。
The analysis of Tikhonov regularization for nonlinear ill-posed equations with smoothness promoting penalties is an important topic in inverse problem theory. With focus on Hilbert scale models, the case of oversmoothing penalties, i.e., when the penalty takes an infinite value at the true solution gained increasing interest. The considered nonlinearity structure is as in the study B. Hofmann and P. Mathé. Tikhonov regularization with oversmoothing penalty for non-linear ill-posed problems in Hilbert scales. Inverse Problems, 2018. Such analysis can address two fundamental questions. When is it possible to achieve order optimal reconstruction? How to select the regularization parameter? The present study complements previous ones by two main facets. First, an error decomposition into a smoothness dependent and a (smoothness independent) noise propagation term is derived, covering a large range of smoothness conditions. Secondly, parameter selection by balancing principles is presented. A detailed discussion, covering some history and variations of the parameter choice by balancing shows under which conditions such balancing principles yield order optimal reconstruction. A numerical case study, based on some exponential growth model, provides additional insights.