论文标题
使用三胞胎网络链接的医疗实体
Medical Entity Linking using Triplet Network
论文作者
论文摘要
实体链接(或归一化)是文本挖掘的必不可少的任务,该任务将实体在医学文本中提到的映射到给定知识库(KB)中的标准实体。这项任务在医疗领域非常重要。它也可以用于合并不同的医学和临床本体论。在本文中,我们围绕着连接或归一化的疾病问题。此任务分为两个阶段:候选人生成和候选人评分。在本文中,我们提出了一种根据疾病提及的相似性来对候选知识基础条目进行排名的方法。我们利用三胞胎网络进行候选排名。尽管现有方法已使用精心生成的筛子和外部资源进行候选生成,但我们引入了不利于手工制作的规则的强大而便携式的候选生成方案。标准基准NCBI疾病数据集的实验结果表明,我们的系统的表现优于先前的方法。
Entity linking (or Normalization) is an essential task in text mining that maps the entity mentions in the medical text to standard entities in a given Knowledge Base (KB). This task is of great importance in the medical domain. It can also be used for merging different medical and clinical ontologies. In this paper, we center around the problem of disease linking or normalization. This task is executed in two phases: candidate generation and candidate scoring. In this paper, we present an approach to rank the candidate Knowledge Base entries based on their similarity with disease mention. We make use of the Triplet Network for candidate ranking. While the existing methods have used carefully generated sieves and external resources for candidate generation, we introduce a robust and portable candidate generation scheme that does not make use of the hand-crafted rules. Experimental results on the standard benchmark NCBI disease dataset demonstrate that our system outperforms the prior methods by a significant margin.