论文标题

PEFP:在FPGA上有效的K-Hop限制了S-T简单的路径枚举

PEFP: Efficient k-hop Constrained s-t Simple Path Enumeration on FPGA

论文作者

Lai, Zhengmin, Peng, You, Yang, Shiyu, Lin, Xuemin, Zhang, Wenjie

论文摘要

图在代表实体及其关系中在各种领域(例如电子商务网络,社交网络和生物网络)中起着至关重要的作用。给定两个顶点S和T,图数据库中的基本问题之一是研究S和T之间的关系。在这样的领域,一个充分研究的问题是K-HOP受限的S-T简单路径枚举。然而,针对此问题的所有现有算法都遵循基于DFS的范式,该范式无法很好地扩展。此外,使用诸如FPGA之类的硬件设备加速​​图表已经流行。在本文中,我们提出了第一个基于FPGA的算法PEFP,以有效地解决K-Hop受限的S-T简单路径枚举的问题。在主机侧,我们提出了一种预处理算法Pre-BFS,以减少图形尺寸和搜索空间。在PEFP的FPGA侧,我们提出了一种新型的基于DFS的批处理技术,以有效地节省片上的内存。此外,我们还建议在BRAM中缓存必要数据的缓存技术,该数据克服了从/到FPGA DRAM的读/写操作带来的延迟瓶颈。最后,我们提出了一种数据分离技术,以启用路径验证模块的数据流优化。因此,该模块中的子阶段可以并行执行。全面的实验表明,PEFP的表现平均比最先进的算法加入了1个以上的几个数量级,并且在预处理时间,查询处理时间和总时间方面,最多可达2个数量级。

Graph plays a vital role in representing entities and their relationships in a variety of fields, such as e-commerce networks, social networks and biological networks. Given two vertices s and t, one of the fundamental problems in graph databases is to investigate the relationships between s and t. A well-studied problem in such area is k-hop constrained s-t simple path enumeration. Nevertheless, all existing algorithms targeting this problem follow the DFS-based paradigm, which cannot scale up well. Moreover, using hardware devices like FPGA to accelerate graph computation has become popular. Motivated by this, in this paper, we propose the first FPGA-based algorithm PEFP to solve the problem of k-hop constrained s-t simple path enumeration efficiently. On the host side, we propose a preprocessing algorithm Pre-BFS to reduce the graph size and search space. On the FPGA side in PEFP, we propose a novel DFS-based batching technique to save on-chip memory efficiently. In addition, we also propose caching techniques to cache necessary data in BRAM, which overcome the latency bottleneck brought by the read/write operations from/to FPGA DRAM. Finally, we propose a data separation technique to enable dataflow optimization for the path verification module; hence the sub-stages in that module can be executed in parallel. Comprehensive experiments show that PEFP outperforms the state-of-the-art algorithm JOIN by more than 1 order of magnitude by average, and up to 2 orders of magnitude in terms of preprocessing time, query processing time and total time, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源