论文标题

OGLE-2017-BLG-1049:另一个巨大的行星微透镜事件

OGLE-2017-BLG-1049: Another giant planet microlensing event

论文作者

Kim, Yun Hak, Chung, Sun-Ju, Udalski, A., Bond, Ian A., Jung, Youn Kil, Gould, Andrew, Albrow, Michael D., Han, Cheongho, Hwang, Kyu-Ha, Ryu, Yoon-Hyun, Shin, In-Gu, Shvartzvald, Yossi, Yee, Jennifer C., Zang, Weicheng, Cha, Sang-Mok, Kim, Dong-Jin, Kim, Hyoun-Woo, Kim, Seung-Lee, Lee, Chung-Uk, Lee, Dong-Joo, Lee, Yongseok, Park, Byeong-Gon, Pogge, Richard W., Poleski, Radek, Mroz, Przemek, Skowron, Jan, Szymanski, Michal K., Soszynski, Igor, Pietrukowicz, Pawel, Kozlowski, Syzmon, Ulaczyk, Krzysztof, Rybicki, Krzysztof A., Iwanek, Patryk, Abe, Fumio, Barry, Richard, Bennett, David P., Bhattacharya, Aparna, Donachie, Martin, Fujii, Hirosane, Fukui, Akihiko, Itow, Yoshitaka, Hirao, Yuki, Kirikawa, Rintaro, Kondo, Iona, Koshimoto, Naoki, Matsubara, Yutaka, Muraki, Yasushi, Miyazaki, Shota, Ranc, Clement, Rattenbury, Nicholas J., Satoh, Yuki, Shoji, Hikaru, Sumi, Takahiro, Suzuki, Daisuke, Tristram, Paul J., Tanaka, Yuzuru, Yamawaki, Tsubasa, Yonehara, Atsunori

论文摘要

我们报告了在微验证事件OGLE-2017-BLG-1049中的一个巨大系外行星发现,该事件是行星主机恒星质量比为$ Q = 9.53 \ pm0.39 \ pm0.39 \ times10^{ - 3} $,并且具有韩国微洛克伦远程网络(KMTNET)的苛刻交叉特征。腐蚀性交叉功能产生的角度爱因斯坦半径为$θ_ {\ rm e} = 0.52 \ pm 0.11 \ {\ rm mas} $。但是,由于事件的时间尺度$ t _ {\ rm e} \ simeq 29 \ {\ rm days} $,因此未测量微丝方视差,在这种情况下,这还不够长,无法确定Microlens parallax。因此,我们进行贝叶斯分析以估计晶状体系统的物理量。 From this, we find that the lens system has a star with mass $M_{\rm h}=0.55^{+0.36}_{-0.29} \ M_{\odot}$ hosting a giant planet with $M_{\rm p}=5.53^{+3.62}_{-2.87} \ m _ {\ rm jup} $,在$ d _ {\ rm l} = 5.67^{+1.11} _ { - 1.52} \ {\ rm kpc} $的距离处。与镜头系统总质量相对应的Einstein Radius $(θ_ {\ rm E})单位的预计的星形行星分离为$ a _ {\ perp} = 3.92^{+1.10} _ {+1.10} _ { - 1.32}} \ \ rm {au}这意味着地球位于宿主的雪线之外。相对镜头 - 源正确的运动为$μ_ {\ rm rel} \ sim 7 \ \ rm {mas \ yr^{ - 1}} $,因此镜头和源将在10年内彼此分离。然后,可以通过30m级望远镜进行高分辨率成像的30m级望远镜测量宿主恒星的通量,因此可以确定其质量。

We report a giant exoplanet discovery in the microlensing event OGLE-2017-BLG-1049, which is a planet-host star mass ratio of $q=9.53\pm0.39\times10^{-3}$ and has a caustic crossing feature in the Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of $θ_{\rm E}=0.52 \pm 0.11\ {\rm mas}$. However, the microlens parallax is not measured because of the time scale of the event $t_{\rm E}\simeq 29\ {\rm days}$, which is not long enough in this case to determine the microlens parallax. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. From this, we find that the lens system has a star with mass $M_{\rm h}=0.55^{+0.36}_{-0.29} \ M_{\odot}$ hosting a giant planet with $M_{\rm p}=5.53^{+3.62}_{-2.87} \ M_{\rm Jup}$, at a distance of $D_{\rm L}=5.67^{+1.11}_{-1.52}\ {\rm kpc}$. The projected star-planet separation in units of the Einstein radius $(θ_{\rm E})$ corresponding to the total mass of the lens system is $a_{\perp}=3.92^{+1.10}_{-1.32}\ \rm{au}$. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is $μ_{\rm rel}\sim 7 \ \rm{mas \ yr^{-1}}$, thus the lens and source will be separated from each other within 10 years. Then the flux of the host star can be measured by a 30m class telescope with high-resolution imaging in the future, and thus its mass can be determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源