论文标题

关于“为什么?”和“为什么不呢?”解释

On Relating 'Why?' and 'Why Not?' Explanations

论文作者

Ignatiev, Alexey, Narodytska, Nina, Asher, Nicholas, Marques-Silva, Joao

论文摘要

机器学习(ML)模型的解释通常会解决“为什么?”问题。这种解释可能与选择特征值对相关,这足以进行预测。最近的工作调查了解决“为什么不呢?”的解释。问题,即找到可以保证更改预测的特征值的变化。鉴于他们的目标,这两种解释ML模型预测的形式似乎主要是无关的。但是,本文证明了另外,并在“为什么?”之间建立了严格的形式关系。和“为什么不呢?”解释。具体而言,本文证明,对于任何给定的实例,“为什么?”解释是最小击中“为什么不呢?”的一组。解释,反之亦然。此外,该论文设计了用于提取和列举两种形式的解释的新型算法。

Explanations of Machine Learning (ML) models often address a 'Why?' question. Such explanations can be related with selecting feature-value pairs which are sufficient for the prediction. Recent work has investigated explanations that address a 'Why Not?' question, i.e. finding a change of feature values that guarantee a change of prediction. Given their goals, these two forms of explaining predictions of ML models appear to be mostly unrelated. However, this paper demonstrates otherwise, and establishes a rigorous formal relationship between 'Why?' and 'Why Not?' explanations. Concretely, the paper proves that, for any given instance, 'Why?' explanations are minimal hitting sets of 'Why Not?' explanations and vice-versa. Furthermore, the paper devises novel algorithms for extracting and enumerating both forms of explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源