论文标题

融合CNN和统计指标以改善图像分类

Fusing CNNs and statistical indicators to improve image classification

论文作者

Huertas-Tato, Javier, Martín, Alejandro, Fierrez, Julián, Camacho, David

论文摘要

在过去的十年中,卷积网络在计算机视野中占据了主导地位,表现出非常强大的功能提取功能和出色的分类性能。延长这种趋势的主要策略依赖于大小的进一步提高网络。但是,成本迅速增加,而绩效提高可能是微不足道的。我们假设,与建立更大的网络相比,添加异构信息来源对CNN可能更具成本效益。在本文中,提出了一种合奏方法,以进行准确的图像分类,并通过卷积神经网络体系结构与一组手动定义的统计指标融合自动检测到的特征。通过将CNN的预测和经过统计特征培训的二级分类器的预测结合在一起,可以便宜地实现更好的分类性能。我们在多种数据集上测试了多种学习算法和CNN架构,以验证我们的建议,并通过GitHub公开我们的所有代码和数据。根据我们的结果,包含其他指标和合奏分类方法有助于提高9个数据集中的8个性能,其中两个数据集的精度显着提高了10%以上。

Convolutional Networks have dominated the field of computer vision for the last ten years, exhibiting extremely powerful feature extraction capabilities and outstanding classification performance. The main strategy to prolong this trend relies on further upscaling networks in size. However, costs increase rapidly while performance improvements may be marginal. We hypothesise that adding heterogeneous sources of information may be more cost-effective to a CNN than building a bigger network. In this paper, an ensemble method is proposed for accurate image classification, fusing automatically detected features through Convolutional Neural Network architectures with a set of manually defined statistical indicators. Through a combination of the predictions of a CNN and a secondary classifier trained on statistical features, better classification performance can be cheaply achieved. We test multiple learning algorithms and CNN architectures on a diverse number of datasets to validate our proposal, making public all our code and data via GitHub. According to our results, the inclusion of additional indicators and an ensemble classification approach helps to increase the performance in 8 of 9 datasets, with a remarkable increase of more than 10% precision in two of them.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源