论文标题

贝叶斯优化基于区域的道路定价

Bayesian Optimization of Area-based Road Pricing

论文作者

Liu, Renming, Jiang, Yu, Azevedo, Carlos Lima

论文摘要

这项研究提出了针对城市网络的基于区域和距离的日期定价(TODP)的贝叶斯优化框架。道路定价优化问题可以根据所考虑的定价方案,其相关的详细网络属性以及受影响的异质需求特征达到高度的复杂性。我们考虑具有特定特定旅行属性和出发时间选择参数的异质旅行者以及城市网络的宏观基本图(MFD)模型。提出了其数学公式,并将基于代理的仿真框架构建为TODP优化问题的评估功能。后者变得高度非线性,并依靠昂贵的评估目标功能。然后,我们提出并测试一种贝叶斯优化方法,以最大程度地提高社会福利来计算不同的日期定价方案。我们提出的方法在一些迭代中了解了价格和福利之间的关系,即使在决策变量空间高维度的情况下,也能够找到良好的解决方案,为更现实的道路定价优化问题树立了复杂性降低的途径。此外,正如预期的那样,模拟结果表明,TODP改善了针对无定价案件的社会福利。

This study presents a Bayesian Optimization framework for area- and distance-based time-of-day pricing (TODP) for urban networks. The road pricing optimization problem can reach high level of complexity depending on the pricing scheme considered, its associated detailed network properties and the affected heterogeneous demand features. We consider heterogeneous travellers with individual-specific trip attributes and departure-time choice parameters together with a Macroscopic Fundamental Diagram (MFD) model for the urban network. Its mathematical formulation is presented and an agent-based simulation framework is constructed as evaluation function for the TODP optimization problem. The latter becomes highly nonlinear and relying on an expensive-to-evaluate objective function. We then present and test a Bayesian Optimization approach to compute different time-of-day pricing schemes by maximizing social welfare. Our proposed method learns the relationship between the prices and welfare within a few iterations and is able to find good solutions even in scenarios with high dimensionality in the decision variables space, setting a path for complexity reduction in more realistic road pricing optimization problems. Furthermore and as expected, the simulation results show that TODP improves the social welfare against the no-pricing case.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源