论文标题

非线性实现超级级别的谎言

Nonlinear realisations of Lie superalgebras

论文作者

Palmkvist, Jakob

论文摘要

For any decomposition of a Lie superalgebra $\mathcal G$ into a direct sum $\mathcal G=\mathcal H\oplus\mathcal E$ of a subalgebra $\mathcal H$ and a subspace $\mathcal E$, without any further resctrictions on $\mathcal H$ and $\mathcal E$, we construct a nonlinear realisation of $ \ MATHCAL E $上的$ \ Mathcal G $。结果将kantor的定理从谎言代数为superalgebras。当$ \ Mathcal G $是一个差分级的Lie代数时,我们表明它为相关的$ l_ \ infty $ -Algebra提供了构造。

For any decomposition of a Lie superalgebra $\mathcal G$ into a direct sum $\mathcal G=\mathcal H\oplus\mathcal E$ of a subalgebra $\mathcal H$ and a subspace $\mathcal E$, without any further resctrictions on $\mathcal H$ and $\mathcal E$, we construct a nonlinear realisation of $\mathcal G$ on $\mathcal E$. The result generalises a theorem by Kantor from Lie algebras to Lie superalgebras. When $\mathcal G$ is a differential graded Lie algebra, we show that it gives a construction of an associated $L_\infty$-algebra.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源