论文标题
具有反转对称性和电子电子相互作用的Bogoliubov-Fermi表面:相对论类比和晶格理论
Bogoliubov-Fermi surface with inversion symmetry and electron-electron interactions: relativistic analogies and lattice theory
论文作者
论文摘要
我们表明,一般的低能Bogoliubov-de Genness Hamiltonian在多型超导体中具有破裂的时间逆转和保留的反转对称性,是$ SO(4)$的真实四维表示的生成器。在特定的表示中,这种有效的哈密顿量是纯粹的虚构矩阵,它与虚拟电磁场的反对称张量成正比,它可以在动量空间中定义。低能量准颗粒状态的量子时间演变与这种方式与带电粒子的经典相对论运动密切相关,而在存在洛伦兹力的情况下,该运动将从这种电磁场构型中得出。然后可以将Bogoliubov-Fermi表面出现的条件理解为虚拟电场和磁场的正交性,这将允许零洛伦兹力。相应的零能量特征态被鉴定为洛伦兹力方程的物理时间和非物理类似溶液。我们通过在Lieb晶格上制定了具有必要的$ SO(4)$动能项以及最近的Neighbor两种抑制作用的Lieb晶格上的混凝土相互作用模型,研究了电子电子相互作用的情况下,在存在电子电子相互作用的情况下,倒置对称的Bogoliubov-Fermi表面的迫在眉睫的不稳定性(4)$动能的两种抑制。后者证明是有利于反转对称性的动态破裂。我们的晶格模型中的反式对称性确实在无穷小排斥时在零温度下自发折断,原始的Bogoliubov-Fermi表面变形并减小了大小。讨论了这种对称性破坏现象的一般特征,并提出了与文献中其他作品的比较。
We show that the general low-energy Bogoliubov-de Genness Hamiltonian in a multiband superconductor with broken time reversal and preserved inversion symmetry is a generator of real four-dimensional representation of $SO(4)$. In the particular representation such an effective Hamiltonian is a purely imaginary matrix, and it is proportional to the antisymmetric tensor of a fictitious electromagnetic field which one can define in the momentum space. The quantum time evolution of the low-energy quasiparticle state becomes this way closely related to the classical relativistic motion of a charged particle in the presence of the Lorentz force that would be derived from such an electromagnetic field configuration. The condition for the emergence of a Bogoliubov-Fermi surface can then be understood as orthogonality of the fictitious electric and magnetic fields, which would allow zero Lorentz force. The corresponding zero-energy eigenstates are identified as the physical timelike and the unphysical spacelike solutions of the Lorentz force equation. We study the looming instability of the inversion-symmetric Bogoliubov-Fermi surface in presence of electron-electron interaction by formulating a concrete interacting model on the Lieb lattice that features the requisite $SO(4)$ kinetic energy term together with nearest-neighbor two-body repulsion. The latter is shown to favor dynamical breaking of the inversion symmetry. The inversion symmetry in our lattice model indeed becomes spontaneously broken at zero temperature at infinitesimal repulsion, with the original Bogoliubov-Fermi surface deformed and reduced in size. General features of this symmetry breaking phenomenon are discussed and a comparison with other works in literature is presented.