论文标题

合并的数据集和指标,用于高动态范围的图像质量

Consolidated Dataset and Metrics for High-Dynamic-Range Image Quality

论文作者

Mikhailiuk, Aliaksei, Perez-Ortiz, Maria, Yue, Dingcheng, Suen, Wilson, Mantiuk, Rafal K.

论文摘要

高动力范围(HDR)图像和视频内容的日益普及到来,需要预测图像障碍严重性的指标,如不同亮度水平和动态范围的显示所示。此类指标应在足够大的主观图像质量数据集上进行培训和验证,以确保稳健的性能。由于现有的HDR质量数据集的大小有限,因此我们通过重新调整和合并现有的HDR和标准Dymanic-range(SDR)数据集创建了一个统一的光度图像质量数据集(UPIQ)。重新调整的质量分数在所有数据集中共享相同的统一质量量表。通过采用心理测量方法来收集额外的跨数据库质量比较并重新缩放数据来实现这种重组。所提出的数据集中的图像以绝对光度和比色单元表示,对应于显示器从显示器发出的光。我们使用新的数据集来重新验证现有的HDR指标,并表明该数据集足以训练深层体系结构。我们在亮度感知图像压缩方面显示了数据集的实用性。

Increasing popularity of high-dynamic-range (HDR) image and video content brings the need for metrics that could predict the severity of image impairments as seen on displays of different brightness levels and dynamic range. Such metrics should be trained and validated on a sufficiently large subjective image quality dataset to ensure robust performance. As the existing HDR quality datasets are limited in size, we created a Unified Photometric Image Quality dataset (UPIQ) with over 4,000 images by realigning and merging existing HDR and standard-dynamic-range (SDR) datasets. The realigned quality scores share the same unified quality scale across all datasets. Such realignment was achieved by collecting additional cross-dataset quality comparisons and re-scaling data with a psychometric scaling method. Images in the proposed dataset are represented in absolute photometric and colorimetric units, corresponding to light emitted from a display. We use the new dataset to retrain existing HDR metrics and show that the dataset is sufficiently large for training deep architectures. We show the utility of the dataset on brightness aware image compression.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源