论文标题

为ITER的分离热载宽宽度构建新的预测缩放公式

Constructing a new predictive scaling formula for ITER's divertor heat-load width informed by a simulation-anchored machine learning

论文作者

Chang, C. S., Ku, S., Hager, R., Churchill, R. M., Hughes, J., Köchl, F., Loarte, A., Parail, V., Pitts, R.

论文摘要

理解和预测转移热载荷宽度$λ_Q$对于具有高融合增益的iTer的更轻松,更健壮的操作是一个至关重要的问题。使用极端尺度的陀螺仪代码XGC1在静电限制下,在三个主要的美国Tokamaks中的静电限制下,使用极端尺度的陀螺仪XGC1的$λ_Q$的先前预测模拟数据[C.S. Chang等,Nucl。 Fusion 57,116023(2017)]再现了EICH和GOLDSTON附着的Divertor公式结果[T. Eich等,Nucl中的公式#14。 Fusion 53,093031(2013); R.J.戈尔德斯顿,nucl。 Fusion 52,013009(2012)],此外,在全功能(Q = 10)场景ITER等离子体上的最大EICH和Goldston公式预测中,预测的$λ_Q$的六倍。 After adding data from further predictive simulations on a highest current JET and highest-current Alcator C-Mod, a machine learning program is used to identify a new scaling formula for $λ_q$ as a simple modification to the Eich formula #14, which reproduces the Eich scaling formula for the present tokamaks and which embraces the wide $λ_q^X{GC}$ for the full-current Q = 10 ITER plasma.然后,在另外三个ITER等离子体上成功测试了新的公式:两个对应于Q = 5的长燃烧方案,一个在低血浆电流处将在ITER操作的初始阶段进行探索。引起较宽的$λQ_^{XGC}的新物理学被确定为跨磁分离质的弱倾斜的,被困的电子模式湍流,已知是电子热和质量的有效转运蛋白。电磁湍流和对新公式的高碰撞作用是XGC1的下一个研究主题。

Understanding and predicting divertor heat-load width $λ_q$ is a critically important problem for an easier and more robust operation of ITER with high fusion gain. Previous predictive simulation data for $λ_q$ using the extreme-scale edge gyrokinetic code XGC1 in the electrostatic limit under attached divertor plasma conditions in three major US tokamaks [C.S. Chang et al., Nucl. Fusion 57, 116023 (2017)] reproduced the Eich and Goldston attached-divertor formula results [formula #14 in T. Eich et al., Nucl. Fusion 53, 093031 (2013); R.J. Goldston, Nucl. Fusion 52, 013009 (2012)], and furthermore predicted over six times wider $λ_q$ than the maximal Eich and Goldston formula predictions on a full-power (Q = 10) scenario ITER plasma. After adding data from further predictive simulations on a highest current JET and highest-current Alcator C-Mod, a machine learning program is used to identify a new scaling formula for $λ_q$ as a simple modification to the Eich formula #14, which reproduces the Eich scaling formula for the present tokamaks and which embraces the wide $λ_q^X{GC}$ for the full-current Q = 10 ITER plasma. The new formula is then successfully tested on three more ITER plasmas: two corresponding to long burning scenarios with Q = 5 and one at low plasma current to be explored in the initial phases of ITER operation. The new physics that gives rise to the wider $λq_^{XGC} is identified to be the weakly-collisional, trapped-electron-mode turbulence across the magnetic separatrix, which is known to be an efficient transporter of the electron heat and mass. Electromagnetic turbulence and high-collisionality effects on the new formula are the next study topics for XGC1.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源