论文标题

基于自学的特定任务图像收集摘要

Self-Supervision based Task-Specific Image Collection Summarization

论文作者

Singh, Anurag, Sharma, Deepak Kumar, Sharma, Sudhir Kumar

论文摘要

深度学习的成功应用(DL)需要大量带注释的数据。这通常限制了将DL雇用给具有大量预算数据收集和计算的企业和个人的好处。摘要通过创建较小的代表数据集提供了可能的解决方案,该数据集可以实时深入学习和分析大数据,从而使DL的使用民主化。在拟议的工作中,我们的目标是探索一种新颖的方法,以使用语义信息和自学意义来探索特定于任务的图像语料库摘要。我们的方法将基于分类的Wasserstein生成对抗网络(Clswgan)用作特征生成网络。该模型还利用旋转不变性作为另一项任务的自学和分类。所有这些目标都添加到Resnet34的功能上,以使其具有歧视性和稳健性。然后,该模型通过在语义嵌入空间中使用K-均值聚类在推理时间生成摘要。因此,该模型的另一个主要优点是,每次都不需要重新训练即可获得不同长度的摘要,这是当前端到端模型的问题。我们还通过定性和定量进行严格的实验来测试模型功效。

Successful applications of deep learning (DL) requires large amount of annotated data. This often restricts the benefits of employing DL to businesses and individuals with large budgets for data-collection and computation. Summarization offers a possible solution by creating much smaller representative datasets that can allow real-time deep learning and analysis of big data and thus democratize use of DL. In the proposed work, our aim is to explore a novel approach to task-specific image corpus summarization using semantic information and self-supervision. Our method uses a classification-based Wasserstein generative adversarial network (CLSWGAN) as a feature generating network. The model also leverages rotational invariance as self-supervision and classification on another task. All these objectives are added on a features from resnet34 to make it discriminative and robust. The model then generates a summary at inference time by using K-means clustering in the semantic embedding space. Thus, another main advantage of this model is that it does not need to be retrained each time to obtain summaries of different lengths which is an issue with current end-to-end models. We also test our model efficacy by means of rigorous experiments both qualitatively and quantitatively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源