论文标题
与nu $(n + 1,q^2)$,$ n \ ne 3 $ cosectral
Graphs cospectral with NU$(n + 1, q^2)$, $n \ne 3$
论文作者
论文摘要
令$ h(n,q^2)$是$ pg(n,q^2)$,$ n \ ge 2 $的非排级赫米尔式品种。令nu $(n+1,q^2)$为$ pg(n,q^2)\ setminus h(n,q^2)$的点的图形,如果连接$ p_1 $和$ p_2 $是$ p_1 $和$ p_2 $是$ p_1 $ content contents of $ p_1 $,$ p_1 $,$ p_2 $是相邻的。然后nu $(n + 1,q^2)$是一个强烈的常规图。在本文中,我们表明nu $(n + 1,q^2)$,$ n \ ne 3 $不取决于其频谱。
Let $H(n, q^2)$ be a non-degenerate Hermitian variety of $PG(n, q^2)$, $n \ge 2$. Let NU$(n+1, q^2)$ be the graph whose vertices are the points of $PG(n, q^2) \setminus H(n, q^2)$ and two vertices $P_1$, $P_2$ are adjacent if the line joining $P_1$ and $P_2$ is tangent to $H(n, q^2)$. Then NU$(n + 1, q^2)$ is a strongly regular graph. In this paper we show that NU$(n + 1, q^2)$, $n \ne 3$, is not determined by its spectrum.