论文标题

K3和Abelian表面上带束带的模束空间的第二个整体共同体学

The second integral cohomology of moduli spaces of sheaves on K3 and Abelian surfaces

论文作者

Perego, Arvid, Rapagnetta, Antonio

论文摘要

在本文中,我们研究了可在投影K3表面上可半固定滑轮的模量空间的第二个整体共同体。 If $S$ is a projective K3 surface, $v$ a Mukai vector and $H$ a $v-$generic polarization on $S$, we show that $H^{2}(M_{v},\mathbb{Z})$ is a free $\mathbb{Z}-$module of rank 23 carrying a pure weight-two Hodge structure and a lattice structure, with respect to which $ h^{2}(m_ {v},\ mathbb {z})$是$ s $ mukai lattice的hodge sublattice $ v^{\ perp} $的hodge等距。对于阿贝里亚表面也证明了类似的结果。

In this paper we study the second integral cohomology of moduli spaces of semistable sheaves on projective K3 surfaces. If $S$ is a projective K3 surface, $v$ a Mukai vector and $H$ a $v-$generic polarization on $S$, we show that $H^{2}(M_{v},\mathbb{Z})$ is a free $\mathbb{Z}-$module of rank 23 carrying a pure weight-two Hodge structure and a lattice structure, with respect to which $H^{2}(M_{v},\mathbb{Z})$ is Hodge isometric to the Hodge sublattice $v^{\perp}$ of the Mukai lattice of $S$. Similar results are proved for Abelian surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源