论文标题

关于特征类的界限通过准态度

On boundedness of characteristic class via quasi-morphism

论文作者

Kawasaki, Morimichi, Maruyama, Shuhei

论文摘要

在本文中,我们根据结构组的通用覆盖率,表征了叶面束的第二界特征类别类别。随着其应用,我们研究了(接触)哈密顿纤维的阻塞类别的界限,并显示了一些哈密顿纤维纤维上叶状结构的不存在。此外,对于任何封闭的符号歧管,我们显示了汉密尔顿二型二型二界同胞组的非平凡性。

In this paper, we characterize the second bounded characteristic classes of foliated bundles in terms of the non-descendible quasi-morphisms on the universal covering of the structure group. As its application, we study the boundedness of obstruction classes for (contact) Hamiltonian fibrations and show the non-existence of foliated structures on some Hamiltonian fibrations. Moreover, for any closed symplectic manifold, we show the non-triviality of the second bounded cohomology group of the Hamiltonian diffeomorphism group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源