论文标题
球形四面体的Wigner衍生物的互惠性
Reciprocity of the Wigner derivative for spherical tetrahedra
论文作者
论文摘要
Wigner衍生物是二面角相对于四面体中相对边长的二面角的部分衍生物,所有其他边缘长度均保持固定。我们计算球形四面体的逆晶体衍生物,即相对于相对的二面角,边缘长度的部分衍生物,所有其他二面角均保持固定。我们表明,逆晶体衍生物实际上等于Wigner衍生物。这些计算是由SU的经典和量子6J符号的渐近学动机(2)。
The Wigner derivative is the partial derivative of dihedral angle with respect to opposite edge length in a tetrahedron, all other edge lengths remaining fixed. We compute the inverse Wigner derivative for spherical tetrahedra, namely the partial derivative of edge length with respect to opposite dihedral angle, all other dihedral angles remaining fixed. We show that the inverse Wigner derivative is actually equal to the Wigner derivative. These computations are motivated by the asymptotics of the classical and quantum 6j symbols for SU(2).